The UNNS Quantization Protocol (UQP): Recursive Operators as Quantum Fields

UNNS Research Notes

September 25, 2025

Abstract

We introduce the *UNNS Quantization Protocol* (UQP), which extends the Hamiltonian Protocol (UHP) by quantizing recursion. Nests are elevated to states in a Hilbert space, operators act as creation and annihilation operators, and the zero nest plays the role of vacuum. This protocol develops a recursive analogue of quantum field theory, providing spectra, excitations, and ground states within UNNS.

Contents

7	Conclusion	3
	6.3 Computation	3
	6.2 Physics	
	6.1 Mathematics	
6	Applications	3
5	Diagrammatic Overview	2
4	Recursive Hamiltonian Operator	2
3	Vacuum and Operators	2
2	Hilbert Space of Nests	1
1	Motivation	1

1 Motivation

The Hamiltonian Protocol provided energy and phase space. Quantization requires operator algebras, ground states, and spectra. The UQP equips UNNS with quantum-like structure, allowing recursive phenomena to be studied as excitations above a substrate vacuum.

2 Hilbert Space of Nests

Definition 2.1 (Recursive Hilbert Space). Let \mathbb{H}_{UNNS} be the Hilbert space spanned by basis vectors $\{|\mathcal{N}\rangle\}$ for admissible nests \mathcal{N} , with inner product

$$\langle \mathcal{N}_1 | \mathcal{N}_2 \rangle = \delta_{\mathcal{N}_1, \mathcal{N}_2}.$$

Remark 2.2. This defines a discrete orthonormal basis of nest states.

3 Vacuum and Operators

Definition 3.1 (Vacuum State). The zero nest defines the vacuum:

$$|0\rangle \equiv |\mathcal{N} = 0\rangle.$$

Definition 3.2 (Creation and Annihilation Operators). For each coefficient a_i of a nest:

$$\hat{a}_i^{\dagger} | \mathcal{N} \rangle = | \mathcal{N} + e_i \rangle, \qquad \hat{a}_i | \mathcal{N} \rangle = \langle a_i \rangle | \mathcal{N} - e_i \rangle,$$

where e_i denotes the unit increment at depth i.

Proposition 3.3 (Commutation Relations). The recursive operators satisfy

$$[\hat{a}_i, \hat{a}_i^{\dagger}] = \delta_{ij}, \qquad [\hat{a}_i, \hat{a}_j] = [\hat{a}_i^{\dagger}, \hat{a}_i^{\dagger}] = 0.$$

Remark 3.4. This makes \mathbb{H}_{UNNS} a Fock space of recursive states.

4 Recursive Hamiltonian Operator

Definition 4.1. The Hamiltonian operator is

$$\hat{H} = \sum_{i} \omega_i \, \hat{a}_i^{\dagger} \hat{a}_i,$$

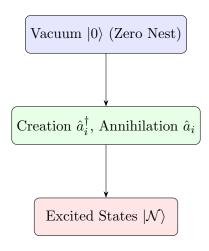
where ω_i encodes the recursion frequency at depth i.

Theorem 4.2 (Energy Spectrum). The spectrum of \hat{H} is

$$E = \sum_{i} \omega_i n_i,$$

where n_i counts excitations at coefficient a_i .

5 Diagrammatic Overview



6 Applications

6.1 Mathematics

- Defines a recursive Fock space.
- Provides operator algebra for nests.

6.2 Physics

- Parallels quantum harmonic oscillator with recursion excitations.
- Suggests UNNS quantum field analogs.

6.3 Computation

- Models recursion states as quantum states.
- Applications in quantum algorithms for recursive systems.

7 Conclusion

The UNNS Quantization Protocol establishes a quantum analogue for recursion, defining vacuum, creation, annihilation, and Hamiltonian spectra. It aligns UNNS with quantum field theory concepts, offering new vistas in mathematics, physics, and computation.